October 26, 2007

LOCKWOOD PLACE BALTIMORE, MD

[TECHNICAL ASSIGNMENT 2]

Monica Steckroth Structural Option Faculty Consultant: Dr. Linda Hanagan

Technical Assignment 2

Executive Summary

Lockwood Place in Baltimore, Maryland is a thirteen story mixed-use development building utilized predominately for retail and corporate businesses. The building enclosure is made primarily of steel with a glass curtain wall façade. Directly adjacent to the building sits a covered mall area and a parking garage. The parking garage connects to the second level of Lockwood Place through a corridor and lobby.

The goal of this report is to investigate alternative floor framing systems and determine their feasibility. Feasibility was determined based on constructability, cost, fire rating, aesthetics, vibration, and the overall impact on other structural components of the building. The systems investigated are: noncomposite steel; open-web steel joist; oneway slab with beams; and two-way flat slab with drop panels.

While the noncomposite steel system and one-way slab with beams system proved to be viable for further investigation, the two-way flat slab with drop panels and open-web steel joist systems did not. A two-way flat slab system with drop panels did not accommodate the existing column grid layout. An open-web steel joist system was very susceptible to vibration issues and required extensive fireproofing measures to achieve the required rating. A more detailed analysis of the systems found to be feasible will be made in the future to determine the optimum floor framing system.

TABLE OF CONTENTS

I.	INTRODUCTION
II.	STRUCTURAL SYSTEM OVERVIEW
III.	CODES & REFERENCES7
IV.	BUILDING LOAD SUMMARY
V.	ALTERNATE STRUCTURAL SYSTEMS
	a. System 1: Composite steel.9b. System 2: Noncomposite steel.11c. System 3: Open-web steel joist.13d. System 4: Two-way flat plate.15e. System 5: One-way flat slab with beams.19
VI.	COMPARISON
VII.	CONCLUSION
VIII.	APPENDIX A
IX.	APPENDIX B
X.	APPENDIX C 40
XI.	APPENDIX D

INTRODUCTION

As an expansion to the corporate/entertainment district of Baltimore's Inner Harbor, the Lockwood Place Office Building is located directly across from the National Aquarium. The building has a curved glass, curtain wall façade and abuts a covered mall area and an adjacent parking garage. It is comprised of thirteen floors and over 300,000 square feet of floor space.

At ground level, a visitor is welcomed by a grand lobby entrance. At the second level, a visitor has direct access to the adjacent parking garage. At the third level, tenants have the option to utilize two balcony spaces. Each floor is designed with large bay sizes, allowing for open floor plans. The spaces on the first two floors, occupied by retail tenants, rise to a combined height of 34 feet. The third through the twelfth floors are occupied by corporate tenants and each floor height is 13'-6". A penthouse is constructed on the thirteenth floor. The floor height is 18' and it sets back slightly from the rest of the building. Lockwood Place is designed to accommodate a range of tenants' needs, while providing a sleek exterior look with each story consisting of full height glass and large spans.

This report analyzes four different floor systems for a typical bay in comparison to the existing floor system. It discusses overall feasibility and impact the floor system has on other building components such as column grid and lateral system. Results are based on vibration criteria, constructability, and aesthetical impact among other factors. The typical bay used in analysis was taken from an office occupancy type floor and loading was determined accordingly.

STRUCTURAL SYSTEM OVERVIEW

Floor System

500 East Pratt Street has a typical superstructure floor framing system made of composite steel beams and girders. The slab is 3-1/4" light weight concrete topping on 3"x20gage galvanized metal deck. For composite beam action, ³/4" diameter by 5-1/2" long headed shear studs are used, conforming to ASTM A108, Grades 1010 through 1020. Typical bay sizes are 30'-0" x 30'-0" and 45'-0" x 30'-0." Infill beams are spaced 10'-0" on center, framing into a typical girder size of W24x62. All steel conforms to ASTM A572, Grade 50, unless otherwise noted on the drawings. MEP systems are run through the structural framing system. Holes created in the beams and girders from the MEP systems are reinforced according to AISC Design Guide 2. A two hour fire rating is provided for all floor slabs, beams, girders, columns, roofs, and vertical trusses. For a more detailed description of atypical floor systems, please refer to Technical Assignment 1.

The typical framing plan (levels 5-11) involves long spans and open areas, providing space flexibility for tenants. The location of the 30'-0" x 45'-0" typical bay analyzed and redesigned throughout this report is at the fifth level and is highlighted below. Due to setbacks and balconies, the footprints and framing of the first through fourth floors, the twelfth floor, and the penthouse vary from what is shown below. Although this bay is considered an end span in the north/south direction, it proves to be the most common bay type.

Lockwood Place Baltimore, MD 10/05/07

Technical Assignment 2

Roof System

At the penthouse level of Lockwood Place, the building steps back creating a high roof and a low roof. A third roof, the highest point of the building, is created by an extended machine room ceiling located at the penthouse level. The roof on the penthouse is sloped slightly downward into the machine room wall. While the framing of the penthouse floor is consistent with the typical building superstructure system, infill beam sizes are reduced due to smaller bay widths. All three roof systems are 1-1/2"x20ga. galvanized type 'B' metal deck. Infill beams are located at 6' on center. Beam sizes range from W10x12 to W24x76 depending on their location.

Exterior slabs that are located at level twelve are 4-1/2" normal weight concrete topping on 3"x20gage galvanized composite metal deck. The slabs are reinforced with 6x6-W2.9xW2.9 W.W.F. Waterproofing is required for all exterior slabs.

A screen wall is located on level twelve to disguise mechanical equipment. A canopy extends over a balcony on the twelfth floor. The canopy is also made of 1-1/2"x20gage galvanized type 'B' metal deck.

Lateral System

Lockwood Place's lateral system is comprised of both moment frames and eccentric braced frames. Moment frames run both east/west and north/south directions. Eccentric braced frames are located around the elevators/elevator lobby. Sizes of the braces range from W14x19 at the base of the building to W8x31 at the top of the building and are pinned connections. Lateral loads were distributed based on the rigidity of each frame. Columns that have eccentric braces framed into them are designed to be fixed to their supports at the base of the building. All other columns are designed to have pinned bases.

Foundation

Located along Baltimore's Inner Harbor, Lockwood Place's soils consist of existing manmade fill. The maximum soil bearing pressure for spread footings is 1000psf. To accommodate for this bearing capacity, the foundation system is made of drilled caissons. Caisson shaft diameters range from 2'-6" to 6'-0." Typically, they extend a minimum if 1'-0" into Gneiss bedrock and have a minimum concrete compressive stress of 4500psi.

Grade beams travel between pile caps and have a minimum concrete compressive strength of 4000psi. Each grade beam ranges in size from 18"x24" to 24"x42" and is reinforced with top and bottom bars.

Lockwood Place Baltimore, MD 10/05/07

Technical Assignment 2

CODES & REFERENCES

Codes employed in this report:

- Design Standards American Society for Civil Engineers (ASCE-7-05) Design Code for Minimum Design Loads
- Structural Steel American Institute of Steel Construction (AISC) *LRFD Specifications for Structural Steel Design – Unified Version, 2005*
- Structural Concrete American Concrete Institute Specification for Reinforced Concrete and Masonry Structures, 2005

References employed in this report:

- CRSI Handbook (2002)
- Steel Joist Institute Standards
- United Steel Deck Manual (2002)
- RS Means Assemblies Cost Data (2008)
- Underwriters Laboratory Fire Resistance Vol.1 (2001)
- RAM Structural Systems
- PCA Slab

BUILDING LOAD SUMMARY

Gravity Loads

The loads for Lockwood Place are presented in an abbreviated form below. The loads are accumulated from The Maryland Building Code Performance Standard. Design loads from the engineer of record and those of the building code are shown in comparison.

Dead Load

DEAD LOAD (psf)							
		L /	Maakina		1st		
		LODDy/	Machine		Floor		
Location/Loading	Office	Corridor	Room	Retail	Lobby	Balconies	Roof
Concrete Slab	46	46	46	63	63	63	-
Metal Deck	2	2	2	-	-	2	2
Pavers/ W.P.	-	-	-	-	-	2	2
M/E/C/L	8	8	8	-	-	8	8
Roofing	-	-	-	-	-	2	2
Insulation	-	-	-	-	-	2	2
Total Dead Load	56	56	56	63	88	115	14

Live Load

LIVE LOAD (psf)					
Location	Design Load	Minimum	6		
		Required	ι		
Office	100	50 for offices only	1		
Lobby/Corridor	100	100 first level, 80 above first level	1		
Machine Room	125	125	i		
Retail	100	100 first level, 75 above first level	1		
1st Floor Lobby	100	100	۰,		
Balconies	100	100 exterior			
Roof	30	20 assuming no reduction			

It is a conservative assumption to use an unreduced roof live oad. Given that the front of the building s a curved radius, here is great variation in tributary areas among roof members. In many

cases in the southern half of the building, the tributary area is too small to be reduced. To simplify the design, no live loads were reduced on the roof.

Wall Load

The building exterior is made of metal faced composite wall panels glazed into a glass curtain wall system. The wall estimated weight is 25psf. This weight is used to determine the building's seismic base shear.

SYSTEM 1: Composite Steel

Description:

The existing floor construction is composite steel. The slab is made of 3" deck with 3-1/4" topping. In a typical bay size of 30'-0" x 45'-0, the typical girder size is W24x64 and infill beam sizes are W24x84 spaced 10' on center. Calculations were performed with a total dead load of 56psf and a live load of 100psf.

The existing framing members have a larger capacity for the given loads determined in Technical Assignment 1. This large capacity may be due to vibration criteria or consideration of holes throughout the beam for MEP systems. For the purpose of this report, detailed hole reinforcement details is omitted. The necessity of the holes and their reinforcement to maximize floor to ceiling height will need to be a consideration when determining other viable systems.

With the large increase in size and capacity of the members, composite action strength from the shear studs is not necessary. Please see the member size requirements for a noncomposite steel floor system on the following pages.

Constructability:

This system requires no formwork or shoring, allowing it to be easily constructed. Construction consists of setting the beams, laying the deck, and pouring the concrete. A fast erection time is possible and easy to sequence.

Aesthetics:

A composite steel floor allows for lighter steel members, yet higher strength. Large spans are possible, creating an open floor layout and flexible spaces. Floor to ceiling height can be maximized by allowing the MEP systems to run through reinforced holes in the beams.

Fire Rating:

A 3-1/4" thick concrete slab will automatically provide the two hour fire rating required for all floors in the building. Steel beams can easily be coated with spray-on fireproofing.

Cost:

Although calculations found smaller sized members to be acceptable, cost data was developed with sized specified on plan. Cost of materials and labor was taken from R.S. Means (2006). The cost data of a typical bay can be found in the table below. Costs include materials, labor, and equipment.

Components	Unit Cost	Quanity	Component Cost	
Steel beams	106.71/ft.	180 ft.	4775.4	
Steel girders	79.59/ft.	60 ft.	19207.8	
Shear studs	0.835/lb.	2220 lb.	1853.7	
Decking	2.36/ft. ²	1350 ft. ²	3186	
Concrete	3.03/ ft. ²	1350 ft. ²	4090.5	
Total \$ 33,113.40				

30'-0"

Technical Assignment 2

SYSTEM 2: NONCOMPOSITE STEEL

Description:

A noncomposite steel floor system was designed for a typical bay size of 30'-0" x 45'-0. The typical girder size was found to be W24x76 and infill beam sizes were W24x76 spaced 10' on center. Deflection from total load is 2.10" and deflection from live load is 1.136." To determine these sizes, a RAM model was assembled and compared to hand calculations. Calculations were performed with a total dead load of 56psf and a live load of 100psf. A thinner slab thickness would be sufficient for the design with absence of shear studs; however, slab thickness was designed as 3" deck with 3-1/4" topping to remain consistent with the composite steel floor system design. Detailed calculations can be found in Appendix A.

Layout & Materials:

f'c= 3500psi fy= 60,000psi 6-1/4" total slab thickness, 3" 20 gage composite deck Lightweight concrete

Constructability:

This system requires no formwork or shoring, allowing it to be easily constructed. As with a composite steel floor, the construction process consists of setting the steel, laying the deck, and pouring the concrete. A fast erection time is possible and easy to sequences.

Lockwood Place Baltimore, MD 10/05/07

Technical Assignment 2

Aesthetics:

With a noncomposite steel floor system, large spans are still possible, creating an open floor plan and flexible spaces. Depths of members remain the same as the existing system. Floor to ceiling height can be maximized by allowing the MEP systems to run through reinforced holes in the beams.

Fire Rating:

A 3-1/4" thick concrete slab will automatically provide the two hour fire rating required for all floors in the building. Steel beams can easily be coated with spray-on fireproofing.

Other system effects:

Minimal changes will need to be made to adjust for a noncomposite steel system. Column grids and MEP systems will remain in place. Columns will remain approximately the same size, without affecting the lateral resisting system. Since the weight of the noncomposite steel system (63.4psf) is comparable to weight of the composite steel system (64.3), foundations will not be greatly affected. To meet vibration criteria for long spans and an office occupancy type, floor framing member sizes may need to be increased. If this system is determined to be the most viable floor system solution, a detailed vibration analysis will need to be completed to verify the controlling factors in the design of the members.

Cost:

Cost of materials and labor was taken from R.S. Means (year). The cost data of a typical bay can be found in the table below. Costs include materials, labor, and equipment.

Components	Unit Cost (\$)	Quantity	Component Cost	
Steel members	96.59	240ft	23181.60	
Decking	$2.36/ft^2$	1350 ft ²	4090.50	
Concrete	3.03/ ft ²	1350 ft^2	3186	
Total \$ 30,458.1				

Summary:

Advantages	Disadvantages
2 hour fire rated	Heavy steel members
Likely meets vibration criteria	Long steel lead time
Fast erection time	
Easy to sequence	
Large spans	

SYSTEM 3: OPEN-WEB STEEL JOIST

Description:

An open-web steel joist floor system was calculated for a typical bay size of 30'-0" x 45'-0". Joists span 45'-0" in the north/south direction. Joist sizes were to found as 32LH06, beam sizes were found as W18x35, and girder sizes were found as W27x84. The joists have a total deflection of 1.818" and a live load deflection of 1.166." Sizes were determined through comparison of a RAM model and hand calculations. Calculations were performed with a total dead load of 56psf and a live load of 100psf. Slab thickness was designed as 3" deck with 3-1/4" topping to remain consistent with the composite steel floor system design. A thinner slab thickness would be sufficient for the design. Calculations for this system can be found in Appendix B.

Layout & Materials:

Constructability:

This system requires no formwork or shoring, allowing it to be easily constructed. The construction process consists of setting the steel, laying the deck, and pouring the concrete. A fast erection time is possible and easy to sequence. Cantilevered edges of the building require joists to be integrated with wide flange beams. It is not practical to assemble a joist to beam connection that is not orthogonal. The curved geometry of the south face of the building inhibits a standard layout of joists.

Lockwood Place Baltimore, MD 10/05/07

Technical Assignment 2

Aesthetics:

With an open-web steel joist floor system, large spans are possible, creating open floor plans and flexible spaces. Although, 32LH series joists have a depth of 32," floor to ceiling height can be maximized by running MEP systems through the open-webs of the joists.

Fire Rating:

A 3-1/4" thick concrete slab will automatically provide the two hour fire rating required for all floors in the building. Steel joists require a mesh encasement before applying spray-on fireproofing. This method is considered ineffective due to difficulty to properly cover the joists. A two hour fire rating could also be achieved by providing another layer with a two hour rating under the joists. MEP systems would need to be below the two hour rated layer to allow for accessible maintenance and in turn, floor to ceiling heights would be much lower.

Other system effects:

The existing column grid layout will remain in place for an open-web steel joist system and columns will remain approximately the same size, in turn the lateral system will not be affected. The weight of the structural system (63psf) is similar to the weight of the structural system (64.3psf), not affecting the foundations. MEP systems may require a drop in height, dependent upon the fireproofing method selected. Vibration is a serious concern of this type of system due to the lack of joist stiffness. Large amounts of vibration may cause this system to be an impractical alternative for floor construction.

Cost:

Cost of materials and labor was taken from R.S. Means (year). The cost data of a typical bay can be found in the table below. Costs include materials, labor, and equipment.

Components	Unit Cost	Quantity	Component Cost
Joists	17.10/ft.	630ft.	10773
Beams	47.80/ft.	180ft.	4302
Girders	106.28/ft.	60ft.	2376.80
Decking	$2.36/ft^{2}$	1350ft ²	3186
Concrete	3.03/ft ²	1350ft ²	4090
Total		\$	28,727.80

Summary:

Advantages	Disadvantages
Fast erection time	Special fireproofing requirements
Easy to sequence	Susceptible to vibrations
Large spans	Difficult connections
Cost effective	Typical layouts may not be possible
	Long steel lead time

SYSTEM 4: ONE-WAY SLAB WITH BEAMS

Description:

A concrete one-way slab with beams was calculated for a typical bay size of 30'-0"x 45'-0." The typical beam size was found to be 18"x32". To maximize floor height, girders depths were kept to 32" and sizes were found to be 24" x 32". A slab thickness of 6" is required for a 15'-0" slab span. Beam deflection from total load is 1.82". These members were sized using CRSI Handbook 2002. To accurately use the tables provided, load factors of 1.4*Dead +1.7*Live were applied. Calculations were performed with a total superimposed load of 10psf and a live load of 100psf. CRSI tables employed can be found in Appendix C. To view the full design, see figures below.

Monica Steckroth Lockwood Place Structural Option Baltimore, MD Dr. Linda Hanagan 10/05/07 Technical Assignment 2 **PLAN** 30'-0" LAYOUT (TYP.) 45'-0" 6"_SLAB 32" \times ĝ 24" ∨ 32" (TYP) (6) #14 -(6) #14 10'-0" 10'-0" 2 # 6" 6" (14) #5 STIRRUPS
(1) @ 2"o.c., (3) @ 11"o.c.,
(10) @ 14"o.c. EACH END -(2) #14 30**°**-0" **GIRDER SECTION** (4) #14 -(4) #14 15'-0" 11'-3" ⊀ + 6" , 6" k └ (15) #5 STIRRUPS (1) @ 2 o.c., 6 @ 10 o.c., 8 @ 14 o.c. EACH END - (2) #14 45'-0"

BEAM SECTION

Lockwood Place Baltimore, MD 10/05/07

Technical Assignment 2

Constructability:

Formwork is required for the cast in place one-way slab with beam system. Workers need to allow appropriate shoring times before removing formwork. Formwork can be reused for the north half of the building, but will need to be constructed on a bay by bay bases for the south half of the building due to the curved exterior façade. Cast in place concrete will have a slower erection time than a steel system.

Aesthetics:

With a one-way slab with beams systems, large spans are still possible, creating open floor plans and flexible spaces. A total beam depth of 32" inhibits a large floor to ceiling height. Although in previous systems MEP equipment could be run through the structural system, this is not possible with concrete beams. With the use of a cast in place concrete floor system, the existing 1'8" slab overhangs can still be achieved.

Fire Rating:

A 6" thick concrete slab will automatically provide the two hour fire rating required for all floors in the building. No additional fireproofing is necessary.

Other System effects:

The existing column grid layout will remain in place for a one-way slab with beams system. Poured concrete columns will need to be sized to resist gravity and lateral loads. The existing moment frame/eccentric brace steel lateral system will need to be redesigned to accommodate the concrete floor system. A concrete moment frame or shear walls may be found more appropriate. Due to the increased weight of the building from the base floor system (77psf increase), lateral forces will need to be recalculated to ensure that seismic loads will not control over wind loads determined in Technical Assignment 1. Additionally, caisson foundation diameters will need to be resized to accommodate the increased load. It can be assumed that the concrete floor system has a relatively higher stiffness than that of the steel floor systems. Vibration criteria will not be a concern as compared to the other systems previously discussed.

Cost:

Cost of materials and labor was taken from R.S. Means (year). The cost data of a typical bay can be found in the table below. Relative to the previously discussed systems labor costs are high due to required formwork. The system costs include forms, reinforcing, concrete, placement and finishings. Unit costs are based on materials, labor, and equipment.

Components	Unit Cost	Quantity	Component Cost
System	553.50/ yd ³	74.4 yd^3	41,153.75
Total		\$	41,153.75

Summary:

Advantages	Disadvantages
No additional fireproofing	Formwork needed
Vibration acceptable	Lower ceiling heights
Large spans	Concrete curing time
	Heavier than base system
	Expensive

SYSTEM 5: TWO WAY FLAT SLAB WITH DROP PANELS

Description:

A concrete one-way slab with beams was calculated for a typical bay size of 30'-0" x 30'-0". Although a two-way flat slab with drop panel system allows for larger spans than a two-two way flat plate system, it is not feasible to achieve the existing span of 45'-0." The design of the floor system can be found in the table below. To determine deflection of the design, a model consisting of three typical bays was set up in PCA Slab with the given load conditions, factors, and layout requirements. Although slab overhangs were considered for end spans, weight from the exterior wall was not. This model was simply to approximate deflections relative to other systems, not to determine exact calculations. A total deflection of 0.25" was found.

This design was determined through the use of CRSI Handbook 2002. To accurately use the tables provided, load factors of 1.4*Dead +1.7*Live were applied. Calculations were performed with a superimposed load of 10psf and a live load of 100psf. Due to the radius of the south edge of the building, individual bays will need to be normalized to determine sufficient reinforcement. Normalization of the bays allows the system to meet design criteria for a two-way slab system, but will need to be further investigated to insure this assumption is conservative. Each of the bays will vary in size. CRSI tables employed can be found in Appendix D.

Span	30'-0"
Slab Depth	10"
Drop Panel Depth	8.5"
Drop Panel Size	10'-0"x 10'-0"
Column Strip	15'-0"
Middle Strip	15'-0"
Minimum Column Dimension	19"

Exterior Panel						
Column Strip Middle Strip						
Top Ext.	Bottom	Top Int.	Bottom	Top Int.		
14-#5	11-#9	14-#7	21-#5	10-#7		

Interior Panel										
Colui	nn Strip	Mido	lle Strip							
Тор	Bottom	Тор	Bottom							
18-#6	22-#5	12-#6	10-#6							

Layout & Materials: f'c= 4000psi fy= 60,000psi 10" slab thickness 8.5" drop panel depth Normal weight concrete

3D Sketch

Constructability:

Minimal formwork is needed for two-way flat slab construction. During construction it will be essential to ensure aggregate is thoroughly distributed between reinforcement bars.

Aesthetics:

Existing bay sizes need to be shorted with a two-way flat slab with drop panel system. A new grid layout can be achieved by creating three 30'-0" bays running in the north/south direction. A fourth bay at the south edge will vary slightly in length across the building

with a maximum span of 28'-0." This grid layout will cause complications on lower floors that do not have typical layouts. Columns will extend through the middle of lobby spaces. Spaces become fairly small on the second level where a parking garage ramp cuts into the floor layout. Shorter bays and additional columns may restrict flexibility and marketability of the space.

A total floor depth of 18.5" is smaller than the existing system. Depending on the depth of the equipment, it may be possible to run MEP equipment below the slab without taking away from total existing floor to ceiling height. The existing 1'8" slab overhangs can still be achieved with the two-way flat stab floor system by extending the top bars at the exterior edge through the length of the overhang.

Fire Rating:

A 10" thick concrete slab will automatically provide the two hour fire rating required for all floors in the building. No additional fireproofing is necessary.

Other System effects:

The existing column grid layout will shift for a two-way flat slab with drop panel system. Poured concrete columns will need to be sized to resist gravity and lateral loads. A minimum column size of 18" is required. The existing moment frame/eccentric brace steel lateral system will need to be redesigned to accommodate the concrete floor system. A concrete moment frame or shear walls may be found more appropriate. Wind was the controlling lateral force determined from Technical Assignment 1. The substantial increase in weight of the floor system (105psf) will require a reevaluation to determine if wind forces will continue to control over seismic forces. The current caisson foundation system is drilled into bedrock, minimizing settlement issues. Caisson diameters may need to be increased to accommodate the additional load. It can be assumed that the concrete floor system has a relatively higher stiffness than that of the steel floor systems. Vibration criteria will not be as much of a concern as compared to the steel systems previously discussed.

Cost:

Cost of materials and labor was taken from R.S. Means (year). The cost data of a typical bay can be found in the table below. Equivalent costs were evaluated based on per square foot of the design and projected onto a 30'-0" x 45'-0" to allow for a direct comparison of floor systems. The system costs include forms, reinforcing, concrete, placement and finishings. Unit costs are based on materials, labor, and equipment.

Components	Unit Cost	Quantity	Component Cost
Beams	$445.75/yd^{3}$	45.6yd ³	20,327.10
Total		\$	20,327.10

Summary:

Advantages	Disadvantages
No additional fireproofing	Formwork needed
Large floor to ceiling height	Larger minimum column size
Cost effective	Smaller spans, interrupted spaces
	Heavier than base system
	Variable construction results
	Concrete curing time necessary
	Larger minimum column size

COMPARISON

Comparisons between the existing floor system and the four new systems were made on the basis of a typical bay size. Fireproofing is based on a two hour minimum for floor systems. Deflection criteria are based on total load deflection of L/240 and live load deflection of L/360. Vibration analysis is based on relative stiffness of the systems. Results of the comparisons are shown in the table below. Large weight variations between the steel and concrete system can be attributed to the use of light weight verses normal weight concrete.

	System 1	System 2	System 3	System 4	System 5
	Steel	Steel	Open web	Two-way flat	One-way slab
	Composite	Noncomposite	steel joist	plate	with beams
Total					
Depth	31"	29"	38-1/4"	18.5"	32"
Slab					
Depth	6-1/4"	6-1/4"	6-1/4"	10"	6"
Structure					
Weight	64.3psf	63.4psf	63psf	141psf	168psf
2					
Cost /ft ²	\$24.53	\$22.56	\$21.28	\$15.06	\$30.50
			Special		
Fireproofing	Spray-on	Spray-on	required	Satisfied	Satisfied
		1.0		0.0	1 1 0**
Deflection	N/A	1.96"	2.24"	0.25"	1.18"
Vibration			· · · ·		.
Concern	Moderate	Moderate	High	Low	Low
T 1/T*	T	T	т	C1	C1 (
Lead Time	Long	Long	Long	Short	Short
	No forme mode	No form	No forme	Formwork	Eamouranta
	NO IOFIN WORK,			required,	FORMWORK
Contractibility	easy to	work, easy to	work, easy to	distributed	iequiied,
Contractionity	sequence	sequence	sequence	ansurbuted	
				Spowling	Spowling
Durability	Steel fatione	Steel fatigue	Steel fatione	concrete	concrete
Durability	Possible	Possible	Possible	possible	nossible
Grid	1 0351010	1 0351010	1 0351010	possible	Possible
Changes	None	None	None	Yes	None
Foundation	1,0110		1,0110	larger caisson	larger caisson
System	None	None	None	diameters	diameters
Effects	1,0110			needed	needed
Lateral					
System	None	None	None	Yes	Yes
Effects					
Viable					
Solution	Yes	Yes	No	No	Yes

CONCLUSION

Floor systems designed in this report are intended to give a relative comparison of the advantages and disadvantages of alternate construction possibilities at 500 East Pratt Street. The four systems investigated are: noncomposite steel; open-web steel joist; one-way flat slab with beams; and two-way flat plate with drop panels.

While the noncomposite steel and one-way slab with beam systems proved to be viable alternatives to the existing composite steel system, the two-way flat plate and open-web steel joist systems did not. Although the two-way flat slab system provided a larger floor to ceiling height, the necessary column grid adjustment was not accommodating to the architectural layout intended by the architect and decreases the space marketability. Open-web steel joists may be lighter in weight, but have major vibration potential with existing large spans. Extensive measures taken to provide proper fireproofing will greatly increase the cost of the system.

The noncomposite steel system designed in this report is lighter than the existing steel system, but has potential to increase in size due to vibration requirements. Following this report, a complete vibration analysis will need to be calculated to accurately determine the more economical system. One-way slab with beams may be heavier in weight and have lower floor to ceiling heights than the base system, but have little vibration concerns and can accommodate the building's existing grid layout. These factors prove the one-way slab with beam system worthy of further investigation.

Although a fifth alternative system was not in the scope of this report, a post tensioned floor system may provide the advantages of a thinner slab allowing for a large floor to ceiling height, fast construction time, and accommodation of large spans and radial grid lines. This system will be further investigated in the future to determine the optimum choice for Lockwood Place's floor system.

Technical Assignment 2

Lockwood Place Baltimore, MD 10/05/07

APPENDIX A SYSTEM 2

Lockwood Place Baltimore, MD 10/05/07

Technical Assignment 2

APPEN DIX A Beam Spot Check : W=1.2(56)+1.6 (100) = (227.2)(10)/1000) = 2.272 Kif Mu= (2.272)(45)2 575.11x $\Delta_{T} = \frac{1}{240} = \frac{45(12)}{240} = 2.25'' \text{ j } \Delta_{L} = \frac{1}{3(40)} = \frac{45(12)}{3(40)} = 1.5''$ 2.25: 1.56 (45)4 (1728). 5 I: 2206 in4 (29000) (I) . 384 (from un factored loads) 1.5= d.5 (45) (1728). 5 I = 21,21.0 in4 (29000)(I) 384 $W 24 \sqrt{76} = 0 Mn = 1750 \qquad \Delta L = 1.136''$ $J_X = 2100 \qquad \Delta_T = 2.10''$ X RAWI model reducedIV CloadsWeight of system: concrete: (3.5+3/2) = 5"(115pef) = 47.9 psf oleck: 2psf T2 steel: 74 (45(4)+2(30)) = 13240/30(45)= 13.5pst Total = 63.4 pst Weight of Existing System: concrete = 48 psf OLCCK: 2105 f 2+ccl: 84(4)(45)+ 62(2)(36) = 18840 = 14pst 30(45) -studis = estimate 2165/stud (222) = 44416 30(45) = 0.33pst Total ucight = 64.3pst

Lockwood Place Baltimore, MD 10/05/07

APPENDIX A Cost Data: steel Decking - \$ 2.36/SF (30)(45) = 3/86 concrete + 3.03 /sF (30)(45) = 4090.5 - assume (" slab - inducles forms, replacing, concrete, placement & history Steel- W24M6 = 96.59 /1F (45(4)+2(30)) = 2318t.6 Total Bay cost = \$ 30,4158.1 Unit cost - \$ 22.56 / Ff2 Total Depth = 6.25 + 22.4 = 28.65 + 29" Total Depth existing = 6.25.+24.1 = 30.35" Cost hov existing system: steel Deck - 3186 concrete - 4090.5 steel - W24×62=79.59(2)(30) = 4/775.4 W24×84= 106.91(4)(45) = 19207.8 studs - equivalent stud cost to 10 16 of steel 222(10) (0.835) = 1853.7 2average total lost = \$33113.40 Unit cost: \$24.53/5.5

Lockwood Place Baltimore, MD 10/05/07

Tachnical Assignment ?

Gravity Beam Design

RAM Steel v11.0 DataBase: Floor System 2 Building Code: IBC

1

10/24/07 20:38:4 Steel Code: AISC LRF

Floor Typ	be: typical		Beam N	umber = 5	1				
SPAN IN Beam Total Mp (k	FORMATIO Size (Optimu Beam Length tip-ft) =	N (ft): um) (ft) 833.33	I-End (65 = =	5.00,45.00) W24X76 30.00	J-End	I (95.00,4	5.00)	Fy = 50.0 ksi	
POINT L	OADS (kips)	:							
Dist 10.000 10.000	DL 14.31 9.52	RedLL 22.50 15.75	Red% 36.7 36.7	NonRLL 0.00 0.00	StorLL 0.00 0.00	Red% 0.0 0.0	RoofLL 0.00 0.00	Red% Snow Snow	
20.000	9.52	22.50	36.7	0.00	0.00	0.0	0.00	Snow	
LINE LO. Load	ADS (k/ft): Dist 0.000 30.000	DL 0.076 0.076	LL 0.000 0.000	Red%	0.00 Ty _I Non	0.0 De R	0.00	Snow	
SHEAR (Ultimate): N	Iax Vu (1	.2DL+1.	6LL) = 68.	74 kips	0.90Vn =	= 283.93 ki	ins	
MOMEN	TS (Ultimate):						P ⁵	
Span	Cond	Load	Combo	Mu kip-fi	ı (a) I ft	Lb C	'b Phi	Phi*Mn kip-ft
Center Controlling	Max +	1.2D 1.2D	L+1.6LL L+1.6LL	683.9 683.9) 15.) 15.	0 10 0 10	.0 1.0 .0 1.0	0 0.90 0 0.90	686.47 686.47
REACTIO	ONS (kips):								
DL rea Max + Max +	action LL reaction total reaction	(factored	1)	Left 24.97 24.23 68.74	Right 24.97 24.23 68.74				
DEFLECT	TIONS:								
Dead 1	oad (in)		at	15.00 ft		-0.671	L/D	= 537	
Live lo Net To	oad (in) otal load (in)		at at	15.00 ft 15.00 ft	=	-0.659 -1.330	L/D L/D	= 546 = 271	

Gravity Beam Design

RAM Steel v11.0 DataBase: Floor System 2 Building Code: IBC

1

10/24/07 20:38:4 Steel Code: AISC LRF

Floor Type	e: typical		Beam Nu	umber = 35					
SPAN INF Beam S Total E Mp (ki	ORMATIC Size (Optim Beam Length p-ft) =	DN (ft): um) 1 (ft) 833.33	$\begin{array}{rcl} \textbf{I-End} & (115.00, 45.00) \\ &= & W24X76 \\ &= & 45.00 \end{array}$) J-En	d (115.00,9	0.00) Fy	= 50.0 ksi	
LINE LOA	DS (k/ft):								
Load	Dist	DL	LL	Red%	Typ	e			
1	0.000	0.560	1.000	25.0%	Re	đ			
12	45.000	0.560	1.000						
2	0.000	0.076	0.000		Nonl	2			
	45.000	0.076	0.000						
SHEAR (U	ltimate): N	Iax Vu (1.2DL+1.	6LL) = 44.	18 kips	0.90Vn = 2	83.93 kips	1	
MOMENT	S (Ultimate	e):							
Span	Cond	Load	lCombo	Mu	6	D Lb	Ch	Phi	Phi*Mn
				kip-ft	f	t ft	00	1 m	kin-ft
Center	Max +	1.2D	L+1.6LL	497.0	22.:	5 0.0	1.00	0.90	750.00
Controlling		1.2D	L+1.6LL	497.0	22.	5 0.0	1.00	0.90	750.00
REACTIO	NS (kips):								
				Left	Right				
DL read	ction			14.31	14.31				
Max +I	LL reaction			16.87	16.87				
Max +te	otal reaction	(factore	d)	44.18	44.18				
DEFLECT	IONS:								
Dead lo	ad (in)		at	22.50 ft	===	-0.964	L/D =	= 560	
Live loa	ad (in)		at	22.50 ft		-1.136	L/D =	= 475	
Net Tot	al load (in)		at	22.50 ft	=	-2.100	L/D =	= 257	

03 30 Cast-In-Place Concrete

			Da	ilu Laba						120120
03 3	0 53.40 Concrete in Place	(r	ew Out	out Hour	tini	Materia	2008	Bare Costs	Tetal	Total
1240	Maximum reinforcing	C-1	4A 13.	77 14.5	4 C.Y	695	555	ss.	1 305	Incl Og
1300	20" diameter, minimum reinforcing		41.1	04 4.87	3	265	187	18.35	1,000	1,/00
1320	Average reinforcing		24.0	05 8.31	6	445	320	91.50	4/0.00 701 ED	605
1340	Moximum reinforcing		17.0	11.75	8	695	450	44.50	1 100 50	1,025
1400	24" diameter, minimum reinforcing		51.8	3.85	7	251	148	1/ 55	/12.50	1,525
1420	Average reinforcing		27.0	6 7.39		445	284	29	410.00	525
1440	Maximum reinforcing		18.2	9 10.93	5	685	4204	20	114/	965
1500	36" diameter, minimum reinforcing		75.0	4 2.66		254	102	10.05	1,140	1,450
1520	Average reinforcing		37.4	9 5.335		425	205	20	300.05	450
1540	Maximum reinforcing		22.8	4 8 7 5 7		425	205	20	000	810
1900	Elevated slabs, flat slab with drops, 125 psf Sup. Load, 20' span	(-14	B 38 4	5 5 410		263	207	33	1,033	1,300
1950		网络马马 斯	50.9	9 4 079		205	167	17.00	487.60	635
2100	Flat plate, 125 psf Sup. Load, 15' span	-Lange and a stell	30.24	1 6 878		2/3	120	14.75	445./5	560
2150	25' span	11	49.60	1 4 194		242	1/1	20	531	705
2300	Waffle const., 30" domes, 125 psf Sup. Load, 20' span		37.07	5 611		217	101	15.20	425.20	540
2350	30' span		44.07	1 720		37.5	215	20.50	610.50	770
2500	One way joists, 30" pans, 125 psf Sup. Load, 15' spon	Managere	27 39	7.507	an an	450	101	17.10	533.10	665
2550	25' span		31 15	6 6 6 77		450	271	27.50	/68.50	980
2700	One way beam & slab, 125 psf Sup, Load, 15' span		20.50	10.077		410	256	24	690	880
2750	> 25' span		20.37	7 224		204	385	36.50	685.50	935
2900	Two way beam & slab, 125 psf Sup. Load, 15' span	AMERICAN TRACK	20.00	0 452	SSI25	240	281	26.50	553.50	740
2950	25' span		24.04	0.032		253	330	31.50	614.50	835
3100	Elevated slabs including finish, not	1 *	33.07	3./77	¥	216	222	21	459	605
3110	including forms or reinforcing									
3150	Regular concrete, 4" slab	6.9	2/12	021	cr	1.01		ANTENDERLINGSOM	The suffrage and the second second	
3200	6" slab	0	2010	.021	5.r.	1.36	./3	.28	2.37	2.91
3250	2-1/2" mick noor nii		2303	.022		2.02	./3	.28	3.03	3.64
3300	Lightweight, 110# per C.F., 2-1/2" thick floor fill		2003	.021		.07	./1	.21	1.00	z.53
3400	Cellular concrete, 1-5/8" fill, under 5000 S.E.	CARSES DE LA	2000	.022	19 32 3	1.19	.73	.28	2.20	2.73
3450	Over 10,000 S.F.		2000	.028		.79	.95	.36	2.10	2.71
8500	Add per floor for 3 to 6 stories high		21000	.025		:/6	.86	.33	1.95	2.50
3520	For 7 to 20 stories high		31800	.002			.06	.02	.08	.12

05 31 Steel Decking

05 3	1 13.50 Floor Decking	14500	Solo Buch	127 HALL	rio carate	WEATHING DUILDED	1	- Karata Martingto	des part a sector and the	COLUMNY STREET
2200	PLOOR DECKING R053100-10		0/00	000		0.01				
3200	Upen decking, 3° deep, wide no, 22 gauge, gaivanized, under 50 squares	t-4	3600	.009	5.f.	2.21	.39	.04	2.64	3.18
3230	Supply Su		3800	.008		1.//	.3/	.03	2.17	2.65
3200	20 annual under EO annual		4000	800.		1.59	.35	.03	1.97	2.42
2200	20 gauge, under 50 squares		3400	.009		2.58	.41	.04	3.03	3.61
2220	SU-SUU squares		3600	.009		2.06	.39	.04	2.49	3.01
2400	over SUU squdres		3800	.008		1.85	.3/	.03	2.25	2./4
2450	18 gauge, under SU squares	i Genteri	3200	.010	100000000000000000000000000000000000000	3.32	.44	.04	3.80	4.48
2420	SU-SUU Squules		3400	.009		2.00	.41	.04	3.11	3.70
2500	Ver SUU squares		3600	.009		2.39	.37	.04	2.82	3.3/
2000	To gouge, under 50 squares		3000	.011		4.39	.46	.04	4.89	5.70
2540	SU-SUU SQUEIES	198.08	3200	.010		3.51	.44	.04	3.99	4.07
3700	(1) (2) deep land rade over 50 courses 20 course		3400	.009		3.10	.41	.04	3.61	4.20
3800	4-1/2 deep, long span loor, over so squares, zo gauge		2/00	.012		4.13	.52	.05	4.70	0.50
2000			2400	.013		2.00	.0/	÷ .05	5.72	0.75
1100	4" doop loop soon 19 aguas	100	2000	.014	esserver	3.70	.57	.00	4.00	0.70
4100	6 deep, long span, ro gaage		1020	.010		7.00	.70	.07	0.3/	7.10
4200	10 guuge		1730	.017		5.70 7.20	./2	.07	0.47	0.50
4500	7-1 /0" doon long tegn 19 aguan		1000	.017		0.00	./5	.07	0.12	7,00
4500	14 aguas	122 43	1070	.019	1000000	0.30	.02	.00	7.20	0.00
4000	14 anure		1390	.020		0.2.0	.00	.08	0.07	10.5
4700	For pointed instead of galuanized deduct	Ŷ	1470	.021	4	0.05	.75	.09	9.07	10.05
5000	For projection performed with fiberaless, add				2.2	1.00			1.00	1.20
5200	Non-callular composite dock, and 2º doop 22 equas	E.A.	20/0	000	э.г.	1.07	2/	02	1.07	2.27
5300	20 gauge	C-4	2000	.000		1.55	.30	.05	0.10	2.57
5400	10 gauge		2000	.009		1.07	.07	.04	2.12	2.00
5500			3300	.009		2.15	.41	.04	2.00	3.10
5700	2″ deen aak 22 aauge	22453	3200	010	93433	1.67	.44	.04	0.17	2,44
5800	20 acep, guit, 22 guuge		3000	011		1.0/	.44	.04	2.13	2.00
5900	18 00000		2850	011		2.20	.40	05	2.83	3.45
	CN CN		2030	010	11	2.27	.47	.00	2.00	0.45

4/40	x 93		1000	080	112	2.20	1.70	10.07	110
4760	x 101	7	1000	000	110	3.39	1.70	118.09	132
4780	x 122	and the second second second second second	1000 .	000	122	3.39	1.70	127.09	142
4900	W 24 x 55		1000 .	080	148	3.39	1.70	153.09	170
5100	v 17		1110	072	66.50	3.06	1.53	71.09	80
5200	20 %		1110 .	072	75	3.06	1 53	79 59	80 50
5300	X 68		1110 .(072	82 50	3.06	1.50	07.00	07.50
5500	x 76			172	02	0.00	1.30	07.09	97.50
5700	x 84		1000		92	3.06	1.53	96.59	108
5720	v 0.4		1080 .0)/4	102	3.14	1.57	106.71	119
5740	74		1080 .0	174	114	3 14	1 57	118 71	122
5/40	x 104		1050 0	74	10/	0.00	1.37	110./1	192

Lockwood Place Baltimore, MD 10/05/07

Technical Assignment 2

APPENDIX B SYSTEM 3

					and the second second	1000	a strange and a strange				
05 1	2 23.75 Structural Steel Members	(rev:	Daily Outpu	Labor- 1 Hours	Unii	Material	2008 B	are Costs Fauinment	Total	Ĩ
0720	x 26		E-2	600	.093	L.F.	31.50	3.91	2.61	38.0	2
0/40	× 33			550	.102		40	4.26	2.85	47.1	1
0900	x 49			550	.102		59.50	4.26	2.85	66.6	
1100	W 12 x 14			880	.064		16.95	2.66	1 78	21.30	0
1300	x 22			880	.064		26.50	2.66	1.78	30.9	2
1500	x 26			880	.064		31.50	2.66	1.78	25.0/	
1520	x 35			810	.069		42.50	2.89	1.93	67.30	9
1560	x 50			750	.075		60.50	3.13	2.09	65.72	
1580	x 58			750	.075		70	3.13	2 09	75 22	
1/00	x 72			640	.088		87	3.66	2.45	03.11	10
1/40	x 87			640	.088		105	3.66	2.45	111 11	10
1900	W 14 x 26			990	.057		31.50	2.37	1.58	35.45	12
2100	x 30			900	.062		36.50	2.60	1.50	40.84	4
2300	x 34			810	.069	11	41	2.89	1.93	15.92	40
2320	x 43		1	310	.069	11	52	2.89	1 92	54.90	52
2340	x 53		1	300	.070	11	64	2 93	1.75	10.02	64
2360	x 74	South States and States	1	60	.074	atote	89.50	3.08	2.06	04.44	10
2380	x 90		7	40	.076		109	3.17	2.00	11/ 20	100
2500	x ‡20		7	20	.078		145	3.76	2.12	114.27	1/0
2700	W 16 x 26		10	000	.056		31 50	2 34	1.57	150.44	661
2900	x 31		9	00	.062		37 50	2.60	1.3/	41 04	40.
3100	x 40		8	00	.070		48 50	2.00	1.74	41.04	48
3120	x 50		8	00	.070		60.50	2.93	1.70	20.07	00
3140	x 67		7	60	.074	11	81	3.08	2.04	02.37	/3.
3300	W 18 x 35	E-5	91	50 .	.083	1.8.05	42 50	3.53	1.77	17.90	70.5
3500	x 40		96	50 .	083	11	48.50	3.53	1.77	47.00	04.0
3520	x 46		96	. 0	083		55.50	3 53	1.77	40.80	10
3/00	x 50		91	2.	088		60.50	3.72	1.86	44.09	07 70
3900	x 55		91	2 .	088	-	66.50	3.72	1.86	72.08	01.0
3920	x 65	11	90	0.0	089		78.50	3.77	1.89	8/ 1/	05
3940	x 76		90	0 .0	089		92	3.77	1.89	97.46	110
3960	x 86		90	0 .0	089		104	3 77	1.89	100 44	122
3980	x 106		90	0.0)89	10000	128	3.77	1.89	199.44	120
4100	W 21 x 44		106	4 .0)75		53	3.19	1:60	57.70	150
4300	x 50		106	4 .0)75		60.50	3.19	1,60	45.20	74
4500	x 62		103	6 .0	77		75	3.27	1.64	70 01	00
4/00	x 68		103	6 .0	77	1	82.50	3.27	1.64	87.41	70
4/20	x 83		100	0.0	80	1	100	3.39	1 70	105.00	110
4/40	x 93		100	0.0	80		113	3.39	1 70	118.00	100
4760	x 101		1000	0.0	80	1	122	3.39	1 70	127.00	132
4/80	x 122		1000) .00	BO	S SEA	148	3.39	1.70	152.00	142
4900	W 24 x 55	State of the second	1110	.07	72	1 201	66.50	3.06	1.52	71.00	1/0
5100	x 62		1110	.07	12		75	3.06	1.50	70.00	00
5300	x 68		1110	.07	2		82.50	3.06	1.53	97.00	07.50
5500	x 76		1110	.07	2	THE	92	3.06	1.53	07.09	100
5700	x 84		1080	.07	4	1	02	314	1.50	104 71	100
5720	x 94		1080	.07	4	1 1	14	3.14	1.57	110.71	117
5740	x 104		1050	.07	6	1	26	3 23	1.2/	110./1	132
5760	x 117	and the second second	1050	07	6	1	42	2.22	1.02	130.85	145
5780	x 146		1050	07	6	1	77	3.23	1.02	146.85	163
5800	W 27 x 84		1190	06	7	1	02	3.23	1.62	181.85	201
5900	x 94	CONTRACTOR DURING AND INCOME.		citta				7.65	1.4.3	106.28	119
			1190	06	10-01-00	1.1	14	2.00	1 40	110.00	1.01

Lockwood Place Baltimore, MD

Di 05 31 Steel Decking

05 31	13	- S	iteel	Floor	Decking	
12 heat multiple and the	Sentence and a	OCONTRACTORY	Station Constant	Selfed set bestell		2003

0010	FLOOR DECKING R053100-10			N.S.S.						
3200	Open decking, 3" deep, wide rib, 22 gauge, galvanized, under 50 squares	E-4	3600	.009	S.F.	2.21	.39	.04	2.64	3.18
3250	50-500 squares		3800	.008		1.77	.37	.03	2.17	2.65
3260	over 500 squares		4000	.008		1.59	.35	.03	1.97	2.42
3300	20 gauge, under 50 squares		3400	.009	and a start	2.58	.41	.04	3.03	3.61
3350	50-500 squares		3600	.009		2.06	.39	.04	2.49	3.01
3360	over 500 squares		3800	.008		1.85	.37	.03	2.25	2.74
3400	18 gauge, under 50 squares		3200	.010		3.32	.44	.04	3.80	4.48
3450	50-500 squares		3400	.009		2.66	.41	.04	3.11	3.70
3460	over 500 squares		3600	.009		2.39	.39	.04	2.82	3.37
3500	16 gauge, under 50 squares		3000	.011		4.39	.46	.04	· 4.89	5.70
3550	50-500 squares		3200	.010		3.51	.44	.04	3.99	4.69
3560	over 500 squares		3400	.009		3.16	.41	.04	3.61	4.26
3700	4-1/2" deep, long span roof, over 50 squares, 20 gauge		2700	.012		4.13	.52	.05	4.70	5.50
3800	18 gauge		2460	.013		5.30	.57	; .05	5.92	6.95
3900	16 gauge	-	2350	.014		3.98	.59	.06	4.63	5.50
4100	6" deep, long span, 18 gauge	16 3	2000	.016		7.60	.70	.07	8.37	9.70
4200	16 gouge		1930	.017		5.70	.72	.07	6.49	7.65
4300	14 gauge		1860	.017		7.30	.75	.07	8.12	9.50
4500	7-1/2" deep, long span, 18 gauge		1690	.019		8.35	.82	.08	9.25	10.80
4600	16 gauge		1590	.020		6.25	.88	.08	7.21	8.50
4700	14 gauge	w.	1490	.021	+	8.05	.93	.09	9.07	10.65
4800	For painted instead of galvanized, deduct					2%				
5000	For acoustical perforated, with fiberglass, add				S.F.	1.09			1.09	1.20
5200	Non-cellular composite deck, galv., 2" deep, 22 gauge	E-4	3860	.008		1.53	.36	.03	1.92	2.37
5300	20 gauge		3600	.009		1.69 '	.39	.04	2.12	2.60
5400	18 gauge		3380	.009		2.15	.41	.04	2.60	3.15
5500	16 gauge		3200	.010		2.69	.44	.04	3.17	3.79
5700	3" deep, galv., 22 gauge		3200	.010		1.67	.44	.04	2.15	2.66
5800	20 gauge		3000	.011		1.86	.46	.04	2.36	2.93
5900	18 aquae CN		2850	011		2 29	49	05	2.83	3.45

03 30 Cast-In-Place Concrete

03 3	0 53.40 Concrete in Place	(rm	Dair	y Labor-	11-11	linest	2008	Bare Costs		Ĩotol
1240	Maximum reinforcing	C.1.4	A 12.7	7 14 52	Unn	Materia	Laber	Equipment	Tota!	Ind Og
1300	20 ^{ar} diameter, minimum reinforcian	014	/10.7	1 19.02	s Lite	690	555	55	1,305	1,700
1320	Average reinforcing		24.0	4 4.073		265	18/	18.35	470.35	605
1340	Maximum reinforcing		17.0	0.010		445	320	31.50	796.50	1,025
1400	24" diameter, minimum reinforcino		17.0	1 11./30		695	450	44.50	1,189.50	1,525
1420	Average reinforcing		27.02	2.002/		251	145	14.55	418.55	525
1440	Maximum reinforcina		10.00	1.371		440	284	28	757	965
1500	36" diameter, minimum reinforcing		10.29	10.735		685	420	41	1,146	1,450
1520	Average reinforcing		75.04	2.665		254	102	10.05	366.05	450
1540	Maximum reinforcing		37.49	5.335		425	205	20	650	810
1900	Elevated slabs, flat slab with drops, 125 pcf Sun, Lond, 201/ coop	C140	22.84	8.757		665	335	33	1,033	1,300
1950	30' sonn	(-14B	38.45	5.410		263	207	19.60	489.60	635
2100	Flat plate 125 psf Sun Load 15' spon	- Second de	50.99	4.079		275	156	14.75	445.75	560
2150	25' span		30.24	6.8/8		242	264	25	531	705
2300	Walfle const 30" domes 125 of Sup Load 20' com		49.60	4.194	11	249	161	15.20	425.20	540
2350	30' span		37.07	5.611	11	375	215	20.50	610.50	770
2500	One way joints 30" none 125 ptf Sup Lond 15' man	CTED WARDEN	44.0/	4./20	-	335	181	17.10	533.10	665
2550	25' snan		27.38	7.597		450	291	27.50	768.50	980
2700	One way begin & slob 125 ncf Sun Lond 157 enge		31.15	6.677		410	256	24	690	880
750			20.59	10.102		264	385	36.50	685.50	935
900	Two way begin & slob 125 pet Sup Load 15/ spec		28.36	7.334	131	246	281	26.50	553.50	740
950	25' snan		24.04	8.652		253	330	31.50	614.50	835
100	Elevated slabs including finish not	V	35.87	5.799	*	216	222	21	459	605
110	including forms or rainforcing									
150	Repulse concrete 4" slob	STITUTE OF		1750m	marine					
200	6" dah	C-8	2613	.021	S.F.	1.36	.73	.28	2.37	2.91
250	2.1 /2" thick floor fill		2585	.022		2.02	.73	.28	3.03	3.64

1

Technical Assignment 2

Standard Joist Selection

RAM Steel v11.0 floor system 1 DataBase: Floor System 3 Building Code: IBC

Beam Number = 160 Floor Type: typical SPAN INFORMATION (ft): I-End (105.00,45.00) J-End (105.00,90.00) = 32LH06 Joist Size (Optimum) = 45.00 Total Beam Length (ft) LINE LOADS (k/ft): Type LL Red% Dist DL Load 0.0% Red 0.200 0.000 0.112 1 0.200 0.112 45.000 NonR 0.000 2 0.000 0.000 ----0.000 0.000 45.000

Maximum Total Unif. Load at any location (lbs/ft): 312.0

Allowable Stress Ratio: 1.00

	Desig	n Loads	Allowa	ble Loads (lbs/ft)
Dead:		112.0			
Live:		200.0			257.4
Total:		312.0			371.4
MOMENTS:					
Span	Cond	Moment	t	a	
		kip-f	t	ft	
Center	Max +	79.0) 2	22.5	
REACTION	S (kips):				
			Left	Right	
DL reacti	on		2.52	2.52	
Max +LL	reaction		4.50	4.50	
Max +tot	al reaction		7.02	7.02	
DEFLECTIO	ONS:			1.47772.475	
Dead load	d (in) 🧹	=	0.653	L/D =	827
Live load	l (in)	=	1.166	L/D =	463
Total loa	d (in)	=	1.818	L/D =	297

Gravity Beam Design

	D
	RA
	flo
RAM	Da
INTERNATIONAL	Bu

RAM Steel v11.0 loor system 1 DataBase: Floor System 3 Building Code: IBC

10/24/07 20:30: Steel Code: ASD 9th E

Floor Ty	pe: typical	B	eam Nu	mber = 56						
SPAN IN Beam Total	FORMATIO Size (Optimu Beam Length	N (ft): I-H im) (ft)	End (125 = 5 = 5	5.00,45.00 W18X35 45.00) J-E	nd (125.0	0,90.00)) Fy = 5	50.0 ksi	
LINE LC	DADS (k/ft):									
Load	Dist	DL	LL	Red%	T	уре				
1	0.000	0.112	0.200	0.0%	F	Red				
	45.000	0.112	0.200							
2	0.000	0.035	0.000		No	nR				
	45.000	0.035	0.000							
SHEAR:	Max V (DL+	-LL) = 7.81	kips f	fv = 1.54 k	si Fv	= 19.13 ks	si			
MOMEN	TS:^									
Span	Cond	Moment	(a) L	b	Cb	Tensi	on Flange	Com	or Flange
		kip-ft		ft	ft		fb	Fb	fb	Fb
Center	Max +	87.8	22.	.5 0.	0	1.00	18.30	33.00	18.30	33.00
Controllin	ıg	87.8	22	.5 0.	0	1.00	18.30	33.00		
REACTI	ONS (kips):									
				Left	Right					
DL re	eaction			3.31	3.31					
Max ·	+LL reaction			4.50	4.50					
Max -	+total reaction			7.81	7.81					
DEFLEC	TIONS:									
Dead	load (in)		at	22.50 ft	=	-0.917		L/D =	589	
Live	load (in)		at	22.50 ft	=	-1.248		L/D =	433	
Net T	otal load (in)		at	22.50 ft	=	-2.165		L/D =	249	

Technical Assignment 2

Gravity Beam Design

RAM NEENATIONAL	DataBase: Fl Building Coo	loor Syste de: IBC	em 3					Stee	10/24/07 l Code: AS	7 20:30:: SD 9th E
Floor Typ	e: typical		Beam Nu	mber = 5	51					
SPAN INF	ORMATIC	ON (ft):	I-End (65	.00,45.00) J-End	1 (95.00,4	(5.00)		000710	
Beam	Size (Optim	um)	=	W27X84				Fy = 50.	0 ksi	
Total I	Beam Length	n (ft)	=	30.00						
POINT LO	OADS (kips):								
Dist	DL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%		
2.000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
2.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
4.000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
4.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
6.000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
6.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
8.000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
8.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
10.000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
10.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
12.000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
12.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
14.000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
14,000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
16.000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
16.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
18,000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
18 000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
20,000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
20.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
22 000	2.52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
22.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
24 000	2 52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
24 000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
26 000	2.52 -	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
26,000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
28,000	2 52	4.50	42.6	0.00	0.00	0.0	0.00	Snow		
28.000	1.76	3.15	42.6	0.00	0.00	0.0	0.00	Snow		
LINELO	ADS (1/ft).									
LINE LO.	ADS (K/II):	DI	II	Red ⁰	ζ Ty	me				
Load	0.000	0.084	0.000	Reu	No	nR				
1	30,000	0.084	0.000		1101	in c				
SUFAD.	Max V (DI	+II) = 6	2 00 kins	fv = 5.3	0 ksi Ev	= 19.44	ksi			
MOMENT	TO.	(LL) 0	2.00 1.105	1, 010						
MOMEN	Cord	Marri	ant	0	Lb	Ch	Tension	Flange	Comp	r Flange
Span	Cond	Nome	ent A	(U)	0	CU	fb	Fh	th	Fb
Conter	March	404	53 14	50	2.0	1.00	27.01	33.00	27.91	33.00
Center	Max +	49	5.5 1.	5.0	2.0	1.00	27.91	35.00	41.11	55.00

RAN	RAM Steel v11.0 floor system 1 DataBase: Floor System Building Code: IBC	3	014111/2				S	Page 2 10/24/07 20:30:: teel Code: ASD 9th E
REACT	IONS (kips):							
			Left	Right				
DLI	reaction		31.25	31.25				
Max	+LL reaction		30.74	30.74				
Max	+total reaction		62.00	62.00				
DEFLE	CTIONS:							
Dea	d load (in)	at	15.00 ft	=	-0.489	L/D	=	736
Live	load (in)	at	15.00 ft	=	-0.482	L/D	=	746
Net	Total load (in)	at	15.00 ft	=	-0.972	L/D	=	370

STANDARD LOAD TABLE/LONG SPAN STEEL JOISTS, LH-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

Joist Designation	in Lbs. Per Linear Ft.	in inches	in l Betv	.bs. ween							CL	EAR SP	AN IN F	EET						
	(Joists only)		28	-32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
24LH03	11	24	11	500	342	339	336	323	307	293	279	267	255	244	234	224	215	207	199	191
24LH04	12	24	14	100	419	398	379	360	343	327	312	298	285	273	262	251	241	231	222	214
24LH05	13	24	15	100	288	265	246	419	399	195 380	363	169 347	331	317	138 304	291	280	269	258	248
241 H06	16	24	201	300	308	297	285	264	244	226	210	196	182	171	160	150	141	132	124	117
24L1100	10	24	20	300	411	382	356	331	306	284	263	245	228	211	197	184	172	161	152	142
24LH07	17	24	22	300	665 452	638 421	613 393	588 367	565 343	320	297	491 276	468 257	239	223	208	389 195	373 182	357	343
24LH08	18	24	23	800	707	677	649	622	597	572	545	520	497	475	455	435	417	400	384	369
24LH09	21	24	28	000	832	808	785	764	731	696	663	632	602	574	548	524	501	480	460	441
24LH10	23	24	29	600	882	856	832	809	788	768	737	702	668	637	608	582	556	533	511	490
24LH11	25	24	31	200	596	559	528	500	474	439	406	378	351	326	304	285	266	249	234	220
			00.00	40	624	588	555	525	498	472	449	418	388	361	337	315	294	276	259	243
28LH05	13	28	14000	14000	337	323	310	297	286	275	265	255	245	237	228	220	213	206	199	193
281 H06	16	28	18600	18600	219	205	192	180	169	159	150	142	133	126	119	113	107	102	97	92
2011100	10	20	24650	24650	289	270	253	238	223	209	197	186	175	166	156	148	140	133	126	120
28LH07	17	28	21000	21000	505 326	484	285	267	427	236	394	379 209	365 197	352 186	339 176	166	316 158	305 150	295 142	135
28LH08	18	28	22500	22500	540	517	496	475	456	438	420	403	387	371	357	344	331	319	308	297
28LH09	21	28	27700	27700	667	639	612	586	563	540	519	499	481	463	446	430	415	401	387	374
28LH10	23	28	30300	30300	428 729	704	679	651	625	600	576	554	533	513	495	477	460	444	429	415
28LH11	25	28	32500	32500	466	439	414 736	388	364	342	322	303	285	269	255	241	228	215	204	193
0011140	07	00	02000	05700	498	475	448	423	397	373	351	331	312	294	278	263	249	236	223	212
ZOLTIZ	21	20	35700	33700	545	520	496	476	454	435	408	383	361	340	321	303	285	270	256	243
28LH13	30	28	37200	37200	895 569	874	854	835	816	799 452	782	766	751 396	373	694 352	668	643	620 297	598 281	266
2011122			38-46	47-48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
32LH06	14	32	16/00	16/00	211	199	169	179	169	161	153	145	138	131	125	119	114	108	104	99
32LH07	10	32	10000	10000	235	223	211	200	189	179	170	162	154	146	140	133	127	121	116	111
32LH08	17	32	20400	20400	411	397	383	369	357	345	333	322	312	302	293	284	275	267	259	252
32LH09	21	32	25600	25600	516	498	480	463	447	432	418	404	391	379	367	356	345	335	325	315
32LH10	21	32	28300	28300	319 571	302 550	285 531	512	495	478	462	445	430	416	402	389	376	364	353	342
321 1111	24	30	31000	31000	352	332	315	297	282	267	254	240	228	217	206	196	186	178	169	162
JELITT	67	04	01000	01000	385	363	343	325	308	292	277	263	251	239	227	216	206	196	187	179
32LH12	27	32	36400	36400	450	428	688 406	664 384	641 364	619 345	598 327	578 311	559 295	281	267	255	243	232	463 221	211
32LH13	30	32	40600	40600	817	801	785	771	742	715	690 376	666	643	621	600	581 288	562	544	527 249	511 238
32LH14	33	32	41800	41800	843	826	810	795	780	766	738	713	688	665	643	622	602	583	564	547
32LH15	35	32	43200	43200	870	853	837	821	805	791	776	763	750	725	701	678	656	635	616	597
			42.46	47.56	532	511	492	473	454	438	63	407 64	393	374	355	68	322	306	292	279
36LH07	16	36	16800	16800	292	283	274	266	258	251	244	237	230	224	218	212	207	201	196	191
36LH08	18	36	18500	18500	321	311	302	293	284	276	268	260	253	246	239	233	227	221	215	209
36LH09	21	36	23700	23700	194	185	386	374	160 363	153 352	146	140 333	323	128	306	118	289	282	275	267
381 110	21	3.0	26100	26100	247	235	224	214	204	195	186	179	171	163	157	150	144	138	133	127
301.010	21	30	20100	20100	273	260	248	236	225	215	206	197	188	180	173	165	159	152	146	140
36LH11	23	36	28500	28500	297	283	269	257	438	234	224	214	205	196	188	358	173	166	159	153
36LH12	25	36	34100	34100	593	575	557	540.	523	508	493	255	464	450	437	213	412	400	389 187	378
36LH13	30	36	40100	40100	697	675	654	634	615	596	579	562	546	531	516	502	488	475	463	451
36LH14	36	36	44200	44200	768	755	729	706	683	661	641	621	602	584	567	551	535	520	505	492
36LH15	36	36	46600	46600	456	434	781	392	373	356	339 698	677	656	637	618	600	259	247	551	228
- Serrie	00		10000		480	464	448	434	413	394	375	358	342	327	312	299	286	274	263	252

53

Technical Assignment 2

Lockwood Place Baltimore, MD 10/05/07

APPENDIX C SYSTEM 4

Lockwood Place Baltimore, MD 10/05/07

APPENDIX C ONE WAY SLAB : fl= 4000 fy= 60,000 W= 1.4 (10) + 1.92(100) = 184 ·End span will control 1827/63.4 - select h= (e" p=0.005 · Interior Span 2107 163.4 OK slabweight = 15psf Serviceability Check: I deflection - 160 (15(12)) = 0.274 - 21/360 = 0.5 2. crack control- 3/4" cover assumed max spacing is 12" ok BEAMS 1. 6"slab · Estimate beam size = 30(18) (150) (1.4) = 787.5 pif 30 45' Factored Loads > [10(1.4)+1.7(100)+ 412(150)(1.4)] 15 +787.5 = 5083.5 plf = 5. P KIf Choose 30×18 in Enclopen beam table $\Delta_{T} = \frac{139}{(1.6)} \left(\frac{5.1}{1.6}\right) (30)^{4} = 1.92^{11}$

Lockwood Place Baltimore, MD 10/05/07

$$\begin{cases} 1RD ER \\ assume clear span = 30' for conservative \\ 1. convert uniform loads - 5.08 (45, sl_5) = 1.94.31 \\ stem = (\frac{18}{(20)})(150)(1.4) = 787.5 \\ et concentrated load tactored moment M= 1.94.31(30) \\ M = 728.66^{15} \\ W = 11.028.66 \\ W = 11.028.66 \\ Solve = 8.9 \\ Het 30^{2} \\ Solve = 100 \\ Het 30^{2} \\ Solve = 100 \\ Het 30^{2} \\ Het 30^{$$

Lockwood Place Baltimore, MD 10/05/07

SOLID ON $f_c' = 3,000$	E-WA psi	Y SLA	BS—E	ND S	PAN Grad	ie 60 l	Bars			Т	op Ste	el for c ≈ 0.0	- <i>M_u</i> 0050
Thickness (in.)	4	41/2	5	5½	6	6½	7	71/2	8	81/2	9	91/2	10
Top Bars Spacing (in.)	#4 12	#4 12	#4 11	#4 9	#5 12	#5 11	#5 10	#5 10	#5 9	#6 12	#6 11	#6 10	#6 10
Bottom Bars Spacing (in.)	#4 12	#4 11	#4 10	#4 8	#4 8	#5 12	#5 11	#5 11	#5 10	#5 9	#6 12	#6 11	#6 11
Top Bars Free End Spacing (in.)	#4 12												
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	#5 17
Areas of Steel (in. ² /ft) Top Interior Bottom	.200 .200	.200 .218	.218 .240	.267 .300	.310 .300	.338 .310	.372 .338	.377 .338	.413 .372	.440 .413	.480 .440	.528 .480	.528 .480
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	125
CLEAR SPAN		a starte		FACT	DRED L	ISABLE	SUPER	IMPOSE) (psf)	(Alternation		
6'-0"	700	906											
6'-6"	586	761	967										
7'-0" 7'-6" 8'-0" 8'-6" 9'-0"	496 423 363 314 272 237	645 552 475 412 359 314	821 704 608 528 462 405	988 856 747 656 579	986 861 757 669	976 858 759	916						
10'-0" 10'-6" 11'-0" 11'-6" 12'-0" 12'-6"	207 158 138 120 105 91	276 191 167 146 127 111	357 248 218 192 169 149	513 364 323 287 256 228	593 481 429 383 343 308	674 591 528 473 426 383	814 722 647 582 524 473	890 790 708 636 574 518	957 859 774 700 634	987 890 806 731	952 865		
13'-0" 13'-6" 14'-0" 14'-6" 15'-0"	79 68 58 49 42	97 84 73 62 53	131 115 101 88 76	204 182 162 145 129	277 249 224 202 182	346 312 282 256 231	428 388 352 320 291	469 426 386 351 320	575 523 477 435 397	664 605 552 505 462	787 ; 719 657 602 552	937 857 785 721 662	999 914 837 769 707
15'-6″		/ 45	66	115	163	209	264	291	363	423	507	610	651
16'-0" 16'-6" 17'-0" 17'-6" 18'-0" 18'-6"			56 48 40	102 90 79 69 60 51	147 132 118 105 94 83	190 171 155 140 126 113	241 219 199 181 164 149	265 241 220 200 182 165	332 304 278 255 233 213	388 356 327 300 275 253	466 429 395 363 335 309	562 519 479 442 409 378	600 554 511 473 437 405
19'-0" 19'-6" 20'-0"				44	73 64 56	101 90 80	135 122 109	149 135 122	195 178 162	232 213 195	284 262 241	350 324 300	374 347 321

Note: See Fig. 7-1 for reinforcing bar details.

SOLID ON $f'_c = 3,000$	E-WA` psi	Y SLA	BS—II	NTERI	OR SI Grad	PAN de 60	Bars			ז ا	op Ste	el for a ≈ 0.0	- <i>M_u</i> 0050
Thickness (in.)	4	41/2	5	51/2	6	6½	7	71/2	8	81⁄2	9	91⁄2	10
Top Bars Spacing (in.)	#4 12	#4 11	#4 10	#4 9	#5 12	#5 11	#5 10	#5 10	#5 9	#6 12	#6 11	#6 10	#6 10
Bottom Bars Spacing (in.)	#3 10	#3 9	#3 7	#4 12	#4 11	#4 10	#4 10	#4 9	#4 8	#5 12	#5 11	#5 10	#5 10
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	#5 17
Areas of Steel (in. ² /ft) Top Interior Bottom	.200 .132	.218 .147	.240 .189	.267 .200	.310 .218	.338 .240	.372 .240	.372 .267	.413 .300	.440 .310	.480 .338	.528 .372	.528 .372
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	125
CLEAR SPAN	7			FACT	ORED U	SABLE	SUPER	MPOSE	d load) (psf)			
6'-0" 6'-6"	703 589	923 775								-			
7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	498 425 365 315 273 238	657 562 485 420 367 321	907 778 673 586 513 452	988 856 747 656 579	935 822 727	894	980		e.				
10'-0" 10'-6" 11'-0" 11'-6" 12'-0" 12'-6"	208 181 159 139 122 107	282 243 214 189 167 148	399 317 281 249 222 197	513 410 365 326 291 261	646 539 482 432 388 349	795 661 592 532 479 433	872 779 699 629 568 514	882 792 713 644 583	964 870 787 715	994 901 819	967		
13'-0" 13'-6" 14'-0" 14'-6" 15'-0"	94 82 71 61 53	131 116 102 90 79	176 157 139 124 110	234 210 188 169 151	315 285 257 233 210	392 355 322 293 266	465 423 384 350 319	529 481 438 400 365	650 593 541 495 453	746 681 623 570 523	882 806 739 678 623	959 880 809 745	939 863 795
15'-6"	45	69	97	136	190	242	291	333	416	480	573	688	733
16'-0" 16'-6" 17'-0" 17'-6" 18'-0" 18'-6"		- 60 51 44	86 76 66 57 49 42	121 108 96 86 76 66	172 156 140 127 114 102	220 200 182 165 150 136	265 242 221 201 -184 167	305 279 255 233 213 195	381 350 322 296 272 250	442 406 374 345 318 293	528 487 450 416 384 355	635 587 543 503 467 433	678 627 580 538 499 463
19'-0" 19'-6" 20'-0"				58 50 43	91 81 72	123 111 100	152 138 125	178 162 147	230 211 194	270 249 229	329 304 281	402 373 346	429 399 370

CONCRETE REINFORCING STEEL INSTITUTE

7-17

Technical Assignment 2

J _y ST	= t	50,00	DO ps	si S ⁽¹⁾			E		1.21	ANS	>	1000-3-	ΓΟΤΑ		PACITY	b ->-	40.11	4 7788		+		10.000					
		0.00	TOM	1 30-			SPAN	Ø_ =	40 ft			SPAN	0 -	- 12 6	ACIT	0 = 1	SDAN	1.72	44.0		-					+ΦM _n -ΦM _n	DEFL (C)
h	b	BOI	TOM	ers	TOP	LOAD	STIR.	φT _n	Al	STEEL	LOAD	STIR.	φī.	A0	STEEL	LOAD	STIR	$h_n = \frac{1}{2}$	44 H	STEEL	1040	SPAN	$h, \ell_n =$	= 46 f	t oteri	(6)	(7)
R1.	in.	12 ui.	0.875 La	(2)		(4) k/ft	TIES (5)	ft- kips	sq. in.	WGT Ib.	(4) k/ft	TIES (5)	ft- kips	sq. in.	WGT Ib.	(4) k/ft	TIES (5)	ft- kips	sq. in.	WGT Ib.	(4) k/ft	TIES (5)	ft- kips	sq,	WGT Ib.	ft-kip	× 10- in.
		2#11		1	3#10	2.7	133M 245H	14	16	839 1289	2.4	133M	14	16	876	2.2	133M	14	+ 0	912	2.0	133M	13	-	948	387	227
		2714		1	3#11	3.5	153M	14	1.6	1123	3.2	153M	14	-	1172	2.9	163M	14	1.0	1203	2.7	354F 163M	54	1.6	1346 1276	467 540	203
	10	2/14	1714	1	3#14	4,8	175M	14	1.0	1778	4.4	175M	14	1.0	1849	4.0*	275H 184M	54 14	1.6	1725	3.7*	285H 184M	54	1.6	1796	562 772	160
		2#14	2#14	22	4#14	5.7*	205HdK 345E	14 54	1.6	2301 2717	5.2*	365E 365E	54 14 54	1.6	2356 2378 2853	4.7*	385E 205K 385E	54 13 54	1.6 1.6	2470 2487 2989	4.3*	405E 215K 405E	54 13 54	1.6 -	2584 2596 3126	772 911 911	152
		2710	1#10	1	3#10	2.9	133M	17	10	911	2.7	133M	17	-	951	2.4	133M	16	-	990	2.2	133M	16	-	1030	471	202
		2711	1611	1	3#11	3.6.	143M	17	1.0	1331	3.2	235I 153M	17	1.8	1393 1171	2.9	245I 153M	66 16	1.8	1455 1220	2.7	255I 153M	66 16	1.8	1517 1269	471 568	189
-	a 18	2414	1#14	1	4#14	5.4	175M	17	1.8	1532	4.9	235I 175M	66 17	1.8	1603 2067	4.5	245I 185M	66 16	1.8	1674 2163	4.1*	255I 184M	65 16	1.8	1746 2135	568 785	139
32		2514	2#14	1 2	5#14	6.9*	195HgM 405D	00 17 66	1.8	2380 2495 3078	6.2*	325F 195leM 425D	66 17 66	1.8	2504 2597 3224	5.7*	335F 205ldM 445D	00 16 66	1.8	2606 2715 3371	5.2*	355F 205IdM 405E	65 16 65	1.8 - 1.8	2730 2817 3384	1002 1002 1128	125
		2#10	1#10	1	3#11	3.3	134M	20	-	1059	3.0	134M	20	-	1102	2.7	134M	20	-	1146	2.5	134M	19		1189	474	182
		2811	1#11	1	3#14	3.9	144M	20	2.0	1381	3.6	2351 154M	20	2.0	1495 1448	3.3	2451 154M	78 20	2.0	1561 1506	3.0	255I 154M	78 19	2.0	1627 1563	573 573	161
	20	28.14	2#14	1	4#14	6.4	175lcM	20	2.0	2265	5.8	235I 175M	20	2.0	1820 2358	5.3*	245I 185M	78 20	2.0	1900 2468	4.8*	255I 185M	78 19	2.0	1980 2561	795 1019	123
		39.14	2#14	1	5#14	7.7	215GiM 485C	20 79	2.0	2764 2848 3603	6.9*	205HgM 425D	78 20 78	2.0	2903 2949 3582	6.3*	385E 205IfM 445D	78 20 78	2.0	3042 3066 3745	5.8*	355F 205leM 465D	78 19 78	1.9 1.9	3066 3183 3909	1019 1224 1224	106
		2#11	1#11	1	4#10	3.9	133M 245H	26	23	1209	3.6	133M	26	-	1260	3.2	133M	26	-	1310	3.0	133M	26	-	1361	580	156
		2#14	1#14	1	4#11	4.7	143M	26	2.3	1603	4,3	153M	26		1683	3.9	275H 153M	104	2.3	2230 1751	3.6	285H 153M	104 26	2.3	2319 1820	628 810	138
	24	2#14	2#14	i	5#14	7.2	174M	26		2531	6.5	174M	26	2.3	2633	5.9*	225J 184M	104 26	2.3	2454 2755	5.4*	235J 184M	104 26	2.3	2562 2857	758 1046	107
		3#14	2#14	1	6#14	8.7	175M 345E	28 106	2.3	3248 4034	7.9*	185M 365E	105 26 105	2.3	3385 3407 4239	7.2*	305G 195M 335F	104 26 104	2.3	3565 3565 4248	6.6*	315G 194M 355F	104 26 104	2.3	3706 3467 4452	1266 1266 1469	93
(1) S (2) In (3) Fc (4) Tc ℓ	es "Re le tabu "Laye us, se or supu eight ital ca /360 a	ecomme ilated be ris" colu icond lin erimposi paotties re desig	inded B am dep mn, first ie is for ed facto tabutat jnated th	ar De th — 2 t line is numbe red loa nus: * X Y	tails", F inches s number of lay id capa using d $-\ell_n/36$ $-\ell_n/24$ - defie	ig. 12-1 (b $- 2''$ er of laye vers for tr city, deduce lection 0 < deflection 0 < deflection 0 < deflection > ℓ_i	For given by bars, for boop bars, and 1.4 x is in excession < ℓ_0 stion < ℓ_0 /180	ders, ttom stem is of /240 /180	(5) Fo fre siz Other	or each be e ends, u ze and spa notation:	eam desi se stirru acing tab N/A ** - *** -	gn, first I ps tabula oulated. F - STIRF - MAXIM - SHEA - TORS	ine is ited fo for stir RUPS / MUM S R STF ION S	for ope r "Inten TUP NO ARE N SPACIN RESS II TRESS	in stirrups ior Spans menclatur OT REQU OT REQU IG IS LES S GREAT S EXCEEI	, secondi , For b > e, see pa IIRED S THAN ER THAN DS ALLO	line is for > 24 in., p age 12-1 I 3 INCH N 10√f ² _c WABLE	ES. NC	d ties. 4 legs DT RE	See Fig. 1 (two stin	12-4. At rups) of IDED	(6) +¢ stre b × (7) Mi (w/ (k/f "Av	DM _n ar ength c h. dspan 1.6) x t.), l _n i erage	nd — ¢ elasti ℓ _n ⁴ , w n ft. service	DM _n are lies for rec c deflection where w = a load" is t	design r tangular on (in.) tabulate aken as	noment section = C x ad load w/1.6.

CONCRETE REINFORCING STEEL INSTITUTE

12-47

Lockwood Place Baltimore, MD 10/05/07

Technical Assignment 2

h in.	ь	1.1.1		10		12				AND NO.			TOT	AL CI	PACITY		1 10	4 12 2 1	(A)								
in.	-	BOT	том	Lay-	TOP	1.0	SPAN	1, 0, :	= 32 f	t	T	SPAN	1.0	- 24	AFACITY	0=	1.4D +	1.71	.3)			_				· ΦM_n	DE
	in.	C. +	0.875	ers		LOAD	STIR.	φΤη	AC	STEEL	LOAD	STIR.	φT	- 34	STEEL	LOAD	SPAN	d. ln	= 36	et etcci	1040	SPAN	1, C _n	= 38	t	-ΦM _n	0
-		12 in.	ln	(2)	1.12	k/ft	(5)	kips	sq. in,	Ib.	(4) k/ft	(5)	ft- kips	sq.	WGT lb.	(4) k/ft	TIES (5)	ft-	sq.	WGT	(4)	TIES	фТ. ft-	sq.	STED. WGT	(6)	
		2#10		1	3#10	5.0	113M 195H	14	17	617	4,4	113M	14	-	651	3.9	113M	14	in.	ID. 685	k/tt	(5)	kips	in,	Ib.	ft-kip	i
		2#11		1	3#11	6.0	114M 195H	14	17	800	~5.4	1215H	57	1.7	1046 853	4.8	225H 124M	57	1.7	1102	10	235H	56	1.7	1153	319 467	
	16	2#14		1 2	4#14	8.4	135M 285E	14	1.7	1363	7.5	215H 135M	57	1.7	1186 1435	6.7	225H 145M	57	1.7	1250	9.0	235H	56	1.7	1314	307 562	
		2#14	1#14	1 2	4#14	9.8	145leM 325D	14 58	1.7	1563 2031	8.7	295E 145IdM 345D	57 14 57	1.7	1854 1646 2157	7.7	315E 155IdM 315E	57 14 57	1.7	1969 1744 2175	6.9	145M 335E 155M 235E	14 56 14	1.7	1593 2083 1827	540 911 772	1
		2# 9	1# 9	1	3#11	5.9	113M 245F	18 70	19	705	5.2	113M	17	-	745	4.7	123M	17	-	790	42	10934	47	1,7	2300	011	
		2#10	1#10	1	3#14	7.4	125M 245E	18	1.0	1071	6.5	124M	17	1.9	1109	5.8	205I 134M	69 17	1.9	1171	5.2	2151	68	1.9	1233	377 568	
	18	2#11	2#11	1	4#14	10.8	155HfM 325D	18	- 1.0	1501	9.5	265F 145leM	69	1.9	1510 1563	8.5	275F 155IdM	69 17	1.9	1586	7.0	295F	68	1.8	1685	47.1 785	1
12		2#14	1#14	1 2	5#14	12.1	175FiM 385C	18 70	1.9	1779 2350	10.7	345D 175GhM 415C	69 17 69	1.9	2093 1872 2510	9.6	365D 175GgM	69 17	1.9	2215 1965	8.6	335E 175HIM	17 68 17	1.8	1735 2227 2059	736 1002 785	
		2# 9	1#9	1	3#11	5.9	104M	21	-	750	5.3	114M	21	-	801	47	4000	09	1.9	2647		385D	68	1.8	2629	1128	3
		2#11	1#11	1	3#14	8.5	1851 125M	83 21	2.1	1059 1166	7.6	1951 125M	82 21	2.1	1122	8.7	2051	82	2.1	841 1185	4.2	114M 215I	20 81	2.0	881 1248	379	10
1	20	2#14	1#14	1	4#14	11.0	285E 145HeM	83 21	2.1	1610 1572	9.7	265F 145ldM	82	2.1	1624	0.7	275F	20 82	2.0	1223 1707	6.1	134M 295F	20 81	20	1283	573	1
		3#11	2#11	1	5#14	13.2	325D 175FjM 385C	83 21 83	2.1	2076 1878 2469	11.7	345D 175FiM 415C	82 21 82	2.1	2204 1977 2637	10.4	365D 175GhM	20 82 20	2.0	1755 2333 2075	7.8 9.3	1551cM 335E 165HIM	20 81 20	2.0	1838 2347 2158	795 1019 902	1
		2#10	1#10	1	4#11	7.5	113M	28	-	956	6.6	113M	28	-	1008	5.0	4000	82	2.0	2781		465C	81	2.0	2019	1221	
		2#11	1#11	1	4#14	9.1	225G 124M	28	2.5	1701 1373	8.0	235G 123M	110	2.4	1792	7.9	245G	109	2.4	1060 1883	5.3	123M 195J	27 108	21	1123	479	8
	24	2#14	1#14	1	5#14	12.7	225G 135M	28	2.5	1991 1920	11.2	235G 135M	110	2.4	2101	10.0	245G	109	2.4	1397 2210	6.4	133M 265G	27 108	2.1	1.178	580	8
+	>	2#14	2#14	1	6#14	15.8	285E 145lcM	28	2.5	2600 2299	14.0	265F 145M	110 28	2.4	2614	10.0	275F	109	2.4	1973 2747	2.0	144M 295F	27	21	2066	810	7
See	e "Rec	commen	ded Ba	r Deta	ile* Ein	42.4	325D 1	111	2.5	3103		345D	110	2.4	3296	12.0	315E	109	2.4	2529 3293	11.2	155M 335E	27	24	2675	1046	6
See use In " ban For wei Tota ("/3	24 7 tabula Layers s, sec super ght. al cap: 60 are	2#11 2#14 2#14 2#14 commen aled bea s" colum ond line imposed acities to a design	1#11 1#14 2#14 ded Ba m depth n, first I is for m I factore abulated	1 -1 1 1 1 -1 1 1 1 -2 ine is umber d load d caus s:* - X -	4#14 5#14 6#14 iils", Fig nches (b number of layer capacit iing defl ℓ _n /360 < ℓ _n /240 <	9.1 12.7 15.8 15.8 1.12-1.	124M 225G 135M 285E 145IcM 325D For girde s for botto b bars. ct 1.4 x ste n excess ion < [,,/2: ion < [,,/11	28 111 28 111 28 111 28 111 ers, om erm of 40 80	2.5 2.5 2.5 (5) For free size	1373 1391 1991 1920 2600 2299 3103 each bea e and spanotation:	8.0 11.2 14.0 am desig e stirrups cing tabu N/A ** ***	2396 123M 235G 135M 265F 145M 345D x fabulat lated. Fo STIRRU MAXIM SHEAR TORSIC	110 28 110 28 110 28 110 28 110 28 110 0 stin UPS # UM S STR	2.4 2.4 2.4 2.4 0r oper "Interior PACINI ESS IS	1792 1327 2101 2013 2614 2414 3296 1 stirrups, or Spans", nenclature DT REQUI G IS LESS GREATE	7.2 10.0 12.5 Secondli For b > s, see pa RED S THAN R THAN	245G 123M 245G 144M 275F 145M 315E ne is for 24 in., pr ge 12-13 3 INCHE 10√Fc	109 27 109 27 109 27 109 27 109 closed rovide	2.4 2.4 - 2.4 - 2.4 tles. S 4 legs	1883 1397 2210 1973 2747 2529 3293 See Fig. 12 (two stirru	6.4 9.0 11.2 2-4. At ps) of	1253M 195J 133M 2265G 144M 295F 155M 335E (6) +\$ Mid- (w/1. (k/ft.) "Aver	27 108 27 108 27 108 27 108 27 108 27 108 4, an agth ca h, span 6) x 1 4, C _n in rage s	2.4 2.4 2.4 2.4 2.4 d — dt. apacitle elastic	1123 1740 1470 2358 2006 2918 2675 3486 4, are do s for rectr deflection ere w = ord/1e ta		479 758 580 10.16 810 1266 10.16 1469 25igu mo mgular se o (in.) = abutatad

*Assumed column is a minimum of 12" squ

1

03 30	53.40 Concrete in Place		Daii	Labor-			2008	Bare Costs		Total
1240	Maximum (einforcing	(re	Uutp	ut hours	Unii	Materia	Laber	Equipment	Ĩota	ind 0a
1300	20" diameter minimum reinforcion	6-14	A 13./	/ 14.524	Ç.Y.	695	555	55	1,305	1,700
1320	Averge reinforming		41.0	4 4.873		265	187	18.35	470.35	605
1340	Maximum reinforcing		24.0	5 8.316		445	320	31.50	796.50	1,025
1400	24" diameter minimum minimum		17.0	1 11.758		695	450	44.50	1,189.50	1,525
1420	2-4 didineres, minimum termorting		51.8	3.857		251	145	14.55	413.55	525
1440	Maximum relationing		27.00	7.391		445	284	28	757	965
1500	Moximum removing		18.29	10.935		685	420	41	1,146	1 450
1520	So dauneter, minimum reinforcing		75.04	2.665		254	102	10.05	366.05	450
15/0	Average reinforcing		37.49	5.335	13	425	205	20	650	810
1000	Maximum reinforcing		22.84	8.757		665	335	33	1.033	1 300
1050	clevoled slobs, flot slob with drops, 125 pst Sup. Load, 20' span	C-148	38.45	5.410		263	207	19.60	489.60	635
1730			50.99	4.079		275	156	14.75	445 75	540
100	Flat plate, 125 pst Sup. Load, 15' span		30.24	6.878	11	242	264	25	531	705
150	25' span		49.60	4.194		249	161	15 20	425 20	540
300	Wattie const., 30" domes, 125 psf Sup. Load, 20' span		37.07	5.611		375	215	20.50	410.50	770
350	30' span		44.07	4.720		335	181	17 10	533 10	110
500	One way joists, 30" pans, 125 psf Sup. Load, 15' span		27.38	7.597		450	291	27.50	749 50	000
550	25' span		31.15	6.677	101	410	756	27.50	/00.00	980
/00	One way beam & slab, 125 psf Sup. Load, 15' span		20.59	10 102		264	385	24 50	070	088
750			28.36	7 334	102	246	201	20.50	005.50	935
900	Two way been & date, 725 p. 1 Sup. Loud, 75 Sport	a proposition of the second	74 114	8.657		240	201	20.50	553.50	740
950	25' span		35.87	5 700		255	000	31.50	614.50	835
100	Clounted cloke industria Batal	1	00.07	2011	V I	210	111	ZI	459	605

Lockwood Place Baltimore, MD 10/05/07

Technical Assignment 2

APPENDIX D SYSTEM 5

Lockwood Place Baltimore, MD 10/05/07

PCA Slab deflection output

f _c ' Gi	= 4, ade 6	000 0 Ba	psi rs	FLAT SLAB SYSTEM SQUARE EDGE PANEL With Drop Panels No Beams								SQUARE INTERIOR PANEL With Drop Panels ⁽²⁾											
$\begin{array}{c} \text{SPAN} \\ \stackrel{\text{CC.}}{\ell_1 = \ell_2} \\ (\text{ft}) \end{array}$	Factored Superim- posed Load (psf)	Square Drop Panel		(3) Square Column		F	REINFO	INFORCING B		(E. W.)	N	MOMENTS		Factored	(3)	REINFORCING BARS (E. W.)			1			
		Load	Depth	Width	Size	T	Top	lumn Strip	(1) Ton	Midd	le Strip	Total	Edge	Bot.	Int.	Superim- posed	Square	Colu	nn Strip	Midd	le Strin	Total	Concr
		(in.)	(ft)	(in.)	n.) Y _f	Ext. +	Bottom	m Int. B	Bottom	Int.	(psf)	(ft-k)	(+) (ft-k)	(-) (ft-k)	Load (psf)	Size (in)	Ton	Bottom	Too	Datta	Steel	Cu.	
			1	h = 10 in	n. = TOT	AL SLAB	DEPTH	BETWEE	EN DROP	PANEL	S	1 Call			h = 10	Din - T	OTAL C	Douom	тор	Bottom	(pst)	1sq.	
25	100	5.50	8.33	12	0.776	12-#5 2	10-#6	14-#5	9-#5	9-#5	2 39	130.1	260.2	250.0	10 - 10	5 m. – 1	UTAL 3	LAB DEF	IH BE	WEEN D	DROP P	ANEL	
25	300	2.50	8.33	15	0.809	12-#5 4	13-#6	13-#6	12-#5	10-#5	2.95	171.3	342.6	461.2	100	12	13-#5	9-#5	9-#5	9-#5	2.19	0.88	
25	400	8.50	8 33	10	0.664	12-#5 1	17-#6	15-#6	15-#5	9-#6	3.59	212.4	424.7	571.8	200	18	12-#6	12-#5	10-#5	9-#5	2.63	0.88	
25	500	8.50	10.00	21	0.032	12-#5 1	15-#7	12-#7	10-#7	15-#5	4.25	254.3	508.6	684.6	400	21	14-#6	15-#5	12-#5	10-#5	3.10	0.89	
	0.000	0.00	10.00	21	0.744	13-#0 3	11-#9	26-#5	15-#6	10-#7	4.97	295.4	590.8	795.3	500	20	10-#0	18-#5	10-#6	12-#5	3.63	0.91	
26	100	5.50	8.67	12	0.810	10 46 0	11.40	10.00	1001000						000	20	13-#1	15-#6	16-#5	10-#6	4.26	0.94	
26	200	7.00	8.67	15	0.010	12-#5 3	11-#0	16-#5	11-#5	10-#5	2.60	146.8	293.7	395.3	100	12	15.#5	11.40	10.10		2. Mer		
26	300	8.50	8.67	18	0.633	12 #5 1	11-#7	14-#6	10-#6	12-#5	3.17	194.0	388.0	522.3	200	18	17.#5	14 #5	10-#5	10-#5	2.40	0.8	
26	400	8.50	8.67	19	0.745	12.#5 2	12.40	15-#6	9-#7	15-#5	3.88	240.6	481.1	647.6	300	21	14.#6	0.47	11-#5	10-#5	2.73	0.89	
26	500	8.50	10.40	24	0.745	15.#5 4	13-#0	18-#8	11-#7	9-#7	4.73	287.7	575.5	774.7	400	23	13.#7	3-#/	13-#5	11-#5	3.31	0.91	
				-	0.1.40	10-110 4	13-#9	12-#8	10-#8	14-#6	5.49	330.9	661.8	890.9	500	25	27.45	10.40	10-#3	10-#6	4.17	0.91	
27	100	7.00	9.00	12	0 746	12,#5 2	18.45	10.45	40.00			Non-				20	21-#3	10-#6	10-#7	16-#5	4.65	0.94	
27	200	7.00	9.00	15	0.804	12.#5 5	17 46	10-#5	12-#5	10-#5	2.63	165.4	330.8	445.4	100	12	15.#5	12 45	10.45	10.00			
27	300	8.50	9.00	18	0.674	12.#5 2	16 47	10-#0	11-#6	13-#5	3.37	218.2	436.3	587.4	200	18	14-#6	11 46	10-#5	10-#5	2.37	0.89	
27	400	8.50	10.80	22	0.756	14.#5 5	12 40	13-#1	19-#5	16-#5	4.12	270.7	541.5	728.9	300	21	12.#7	10 #5	12-#0	10-#5	2.92	0.89	
27	500	8.50	10.80	27	0.682	16.#5 3	17 40	12-#0	10-#8	19-#5	5.09	321.6	643.2	865.8	400	24	26.#5	10.40	10-#3	9-#6	3.56	0.91	
					0.002	10.40 0	11-#0	13-#8	9-#9	9-#8	5.78	366.6	733.3	987.1	500	27	16.#7	11 #0	10+#7	15-#5	4.35	0.94	
28	100	7.00	9.33	12	0.784	13,#5 2	14.46	10 40	40.45					10001100	1.200	ALT.	10.111	11-#0	11-#1	18-#5	5.02	0.94	
28	200	8.50	9.33	16	0.714	13.#5 3	11 #0	10-#0	13-#5	11-#5	2.76	185.0	370.0	498.1	100	12	17.#5	13.#5	10 #5	10.45	120220	10.02	
28	300	8.50	9.33	19	0.757	13-#5 5	11.#0	10-#0	17-#5	15-#5	3.56	243.2	486.4	654.8	200	19	14-#6	17-#5	10-#5	10-#5	2.42	0.89	
28	400	8.50	11.20	25	0.692	16.#5 3	17 #9	14-#1	12-#/	10-#7	4.56	302.4	604.8	814.1	300	21	13.#7	22.#5	10-#0	12-#5	3.02	0.91	
			11.1055554		0.002	10 110 0	17-#0	13-#8	11-#8	12-#7	5.47	357.1	714.3	961.5	400	24	16-#7	11_#8	20 #5	10-#6	3.85	0.912	
29	100	8.50	9.67	12	0.737	13,#5 2	22.#5	10 45	15.45	40.00	1000					- CC	.0.111	11-#0	20-#3	12-#0	4.71	0.947	
29	200	8.50	9.67	16	0.758	13.#5 4	12.40	12 #7	15-#5	12-#5	2.91	206.7	413.4	556.5	100	12	17.#5	15.#5	12.45	44.40		1455 1553	
29	300	8.50	9.67	22	0.718	15.#5 4	20.#7	10-#7	19-#5	16-#5	3.81	271.2	542.5	730.3	200	19	16.#6	10.#5	16 45	11-#5	2.58	0.912	
29	400	8.50	11.60	28	0.639	17.#5 2	15.40	10-#/	10-#8	20-#5	4.92	334.3	668.6	900.1	300	21	15-#7	10.#8	10 #7	13-#5	3.27	0.912	
			12222		0.000	11-110 2	10-#9	14-#0	12-#8	10-#8	5.83	392.7	785.4	1057.3	400	26	13.#8	12 #9	10-#7	16-#5	4.34	0.912	
30	100	8.50	10.00	12	0.774	14-#5 2	10,#8	20.46	10.40	10.110	10000	100000					10.40	12-#0	12-#1	10-#7	5.06	0.947	
5-30	200	8.50	10.00	18	0.744	14-#5 4	11_#9	20-#0	10-#5	10-#6	3.16	229.4	458.8	617.6	100	12	14-#6	12-#6	12.#5	11 45	0.77		
30	300	8.50	10.00	24	0.675	16-#5 3	17.#8	14-#/	44.40	10-#7	4.16	299.6	599.1	806.5	200	19	18-#6	22.#5	10-#0	10.40	2.17	0.912	
							11-110	14-40	11-#8	12-#/	5.24	369.5	739.1	994.9	300	21	16.#7	11.#8	14.47	10-#0	3.57	0.912	

9	2
2	Z
0	5
6	n
÷	1
÷	H.
r	-
=	2
ő	ñ
-	÷
Ξ	1
C	5
ñ	3
	۰.

(05) S (03 30)	30 Cast-In-Place Con 53 — Miscellaneous Cast-In-F	ACTERE Viace Concrete	ika je	

03 30	53.40 Concrete in Place		Daily	Labor-			2008 Bare Costs			Ĩ
1240	Maximum reinterring	Lrev	Uutpu	Hours	Unii	Materia	Laber	Equipment	Tota	Ind
1300	20 ⁿ diameter minimum minimum	(-14)	13.77	14.524	C.Y.	695	555	55	1,305	17
1320			41.04	4.873		265	187	18.35	470.35	6
1940	Averuge reinforcing		24.05	8.316		445	320	31.50	796 50	10
1340	Maximum reinforcing		17.01	11.758		695	450	44.50	1 189 50	1,0
1400	24" diameter, minimum reinforcing		51.85	3.857		251	145	14 55	413 55	1,0
1420	Average reinforcing		27.06	7.391		445	284	28	757	0
1440	Maximum reinforcing		18.29	10.935		685	420	41	11/4	7
1500	36" diameter, minimum reinforcing		75.04	2.665		254	102	10.05	244 05	1,4:
1520	Average reinforcing	C. David St.	37.49	5 335	4 1	425	205	20	100.05	4:
1540	Maximum reinforcing		22.84	8 757		665	205	20	020	8
1900	Elevated slabs, flat slab with drops, 125 psf Sup. Load, 20' span	C-14B	38.45	5 410		243	202	33	1,033	1,3(
1950			50.00	1070		200	20/	19.60	489.60	63
2100	Flat plate, 125 psf Sup. Load, 15' span		20.24	4.077		2/5	156	14.75	445.75	56
2150	25' span		30.24	0.0/0	11	242	264	25	531	70
2300	Waffle const., 30" domes, 125 psf Sup. Lond. 20' snop		47.60	4.194 E (11	har years	249	161	15.20	425.20	54